Quantum Field Theory: Exercise Session 1

Lecturer: Olaf Lechtenfeld

Problem 1: Poincaré algebra for the real scalar field

The real Klein-Gordon field ¢(z) is governed by the Lagrangian density
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We can write ¢(z) and its conjugate momentum 7(z) in terms of the creation and
annihilation operators a; and a;% as
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In the lecture, you have seen that energy and momentum may be written in terms
of a; and a;% as
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and
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where TH is the energy-momentum tensor. The Lorentz generators are given by
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(a) Use the above expressions to write down the boost and rotation generators M;o and
M;; in terms of ¢(x) and 7(z).




(b) Use the Fourier expansions of ¢(z) and 7(x) to express the rotation generators M;;

in terms of a; and al.
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(¢) Compute the commutators [P, ¢(z)] and [M*, ¢(x)] in terms of ¢(z), with the help
of the commutator relations for aj and a..

(d) Optional. Repeat exercises (b) and (c) for the boost generators Mo; to find
My = —i/akwka%ﬁkia,; 9)

and compute the commmutator [M® ¢(z)]. Check that the commutator of Mo
with Mo satisfies the Lorentz algebra
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Problem 2: The complex scalar field

The free complex Klein-Gordon scalar field is governed by the Lagrangian density
‘ L =0, 0" —m?®¢lo. (11)

Since the complex scalar field carries two degrees of freedom, quantizing it gives rise to
two independent creation operators. The mode expansion for ¢ is

(&) = / ik o &7 4 B o] (12)
where the operators a; and by satisfy the commutation relations:
[a,;, a;} - [b,;, b;] = (k- ) (13)

with all other commutators vanishing. The creation operators aTE and bTE create two
types of particle, both of mass m and spin zero, which are interpreted as particles and
anti-particles.

Notice that £ is invariant under the rigid phase transformation ¢ — e**¢. Associ-
ated to this symmetry, Noether’s theorem gives the conserved charge

Q=i / &z (306 — ¢1009) . (14)
(a) Write down the mode expansion for ¢ and the conjugate momenta, 7, .

(b) Express H and @ in terms of the creation and annihilation operators. Show that
[H,Q] = 0 and give the interpretation of Q. Comment also on the implications
that the theory is free.



